952 research outputs found

    Measurement of the configuration of a concave surface by the interference of reflected light

    Get PDF
    A method whereby a concave surface is irradiated with coherent light and the resulting interference fringes yield information on the concave surface is described. This method can be applied to a surface which satisfies the following conditions: (1) the concave face has a mirror surface; (2) the profile of the face is expressed by a mathematical function with a point of inflection. In this interferometry, multilight waves reflected from the concave surface interfere and make fringes wherever the reflected light propagates. Interference fringe orders. Photographs of the fringe patterns for a uniformly loaded thin silicon plate clamped at the edge are shown experimentally. The experimental and the theoretical values of the maximum optical path difference show good agreement. This simple method can be applied to obtain accurate information on concave surfaces

    Neurogenic muscular atrophy and low density of large myelinated fibres of sural nerve in chorea-acanthocytosis

    Get PDF
    In three cases of chorea-acanthocytosis (acanthocytosis and neurological disease, or familial degeneration of the basal ganglia with acanthocytosis), biopsies of short peroneal muscles and sural nerves were studied histologically. The muscles showed groups of atrophic fibres with clumping of sarcolemmal nuclei in all cases. It was concluded that neurogenic muscular atrophy should be included as one of the main pathological findings in chorea-acanthocytosis. The sural nerves showed a small number of large myelinated fibres in two cases. This finding remains to be confirmed in other cases

    Scaling of Star Polymers with one to 80 Arms

    Full text link
    We present large statistics simulations of 3-dimensional star polymers with up to f=80f=80 arms, and with up to 4000 monomers per arm for small values of ff. They were done for the Domb-Joyce model on the simple cubic lattice. This is a model with soft core exclusion which allows multiple occupancy of sites but punishes each same-site pair of monomers with a Boltzmann factor v<1v<1. We use this to allow all arms to be attached at the central site, and we use the `magic' value v=0.6v=0.6 to minimize corrections to scaling. The simulations are made with a very efficient chain growth algorithm with resampling, PERM, modified to allow simultaneous growth of all arms. This allows us to measure not only the swelling (as observed from the center-to-end distances), but also the partition sum. The latter gives very precise estimates of the critical exponents γf\gamma_f. For completeness we made also extensive simulations of linear (unbranched) polymers which give the best estimates for the exponent γ\gamma.Comment: 7 pages, 7 figure

    Coefficient of normal restitution of viscous particles and cooling rate of granular gases

    Full text link
    We investigate the cooling rate of a gas of inelastically interacting particles. When we assume velocity dependent coefficients of restitution the material cools down slower than with constant restitution. This behavior might have large influence to clustering and structure formation processes.Comment: 3 figures, Phys. Rev. E (in press

    Maxwell Model of Traffic Flows

    Full text link
    We investigate traffic flows using the kinetic Boltzmann equations with a Maxwell collision integral. This approach allows analytical determination of the transient behavior and the size distributions. The relaxation of the car and cluster velocity distributions towards steady state is characterized by a wide range of velocity dependent relaxation scales, R1/2<τ(v)<RR^{1/2}<\tau(v)<R, with RR the ratio of the passing and the collision rates. Furthermore, these relaxation time scales decrease with the velocity, with the smallest scale corresponding to the decay of the overall density. The steady state cluster size distribution follows an unusual scaling form Pm4Ψ(m/<m>2)P_m \sim ^{-4} \Psi(m/< m>^2). This distribution is primarily algebraic, Pmm3/2P_m\sim m^{-3/2}, for m2m\ll ^2, and is exponential otherwise.Comment: revtex, 10 page
    corecore